Integral equation theory for two-dimensional polymer melts.

نویسندگان

  • Arun Yethiraj
  • Bong June Sung
  • Fred Lado
چکیده

The polymer reference interaction site model theory is investigated for two-dimensional polymer melts composed of freely-jointed hard disk chains and tangent-disk rods. Exact results for the intramolecular pair correlation functions are input into the theory, and predictions of the theory for the intermolecular pair correlation functions are tested via comparison with simulation. The theory is not as accurate for this system as it is for three-dimensional polymer melts, and the quantitative predictions are not good except at the highest area fractions. Possible reasons for the deficiency in the theory are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theory of Polymer Melts: An Integral Equation Approach’

A general theory is developed for the equilibrium structure of dense polymer melts. This theory is based on an integral equation approach developed by Chandler and co-workers for molecular liquids. We are able to construct a tractable formalism for the polymer problem by employing the fact that a polymer molecule in a melt is ideal. This leads to a set of integral equations for the intermolecul...

متن کامل

A new method for solving two-dimensional fuzzy Fredholm integral equations of the second kind

In this work, we introduce a novel method for solving two-dimensional fuzzy Fredholm integral equations of the second kind (2D-FFIE-2). We use new representation of parametric form of fuzzy numbers and convert a two-dimensional fuzzy Fredholm integral equation to system of two-dimensional Fredholm integral equations of the second kind in crisp case. We can use Adomian decomposition method for n...

متن کامل

Approximation solution of two-dimensional linear stochastic Volterra-Fredholm integral equation via two-dimensional Block-pulse ‎functions

In this paper, a numerical efficient method based on two-dimensional block-pulse functions (BPFs) is proposed to approximate a solution of the two-dimensional linear stochastic Volterra-Fredholm integral equation. Finally the accuracy of this method will be shown by an example.

متن کامل

APPROXIMATION SOLUTION OF TWO-DIMENSIONAL LINEAR STOCHASTIC FREDHOLM INTEGRAL EQUATION BY APPLYING THE HAAR WAVELET

In this paper, we introduce an efficient method based on Haar wavelet to approximate a solutionfor the two-dimensional linear stochastic Fredholm integral equation. We also give an example to demonstrate the accuracy of the method.  

متن کامل

Constructing Two-Dimensional Multi-Wavelet for Solving Two-Dimensional Fredholm Integral Equations

In this paper, a two-dimensional multi-wavelet is constructed in terms of Chebyshev polynomials. The constructed multi-wavelet is an orthonormal basis for space. By discretizing two-dimensional Fredholm integral equation reduce to a algebraic system. The obtained system is solved by the Galerkin method in the subspace of by using two-dimensional multi-wavelet bases. Because the bases of subs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 122 9  شماره 

صفحات  -

تاریخ انتشار 2005